Course Notes / Note de curs

Dr.ing. NAGY-GYÖRGY Tamás

professor

E-mail: tamas.nagy-gyorgy@upt.ro

Tel: +40 256 403 935

Web: http://www.ct.upt.ro/users/TamasNagyGyorgy/index.htm

Office:

A219

4.1 REINFORCEMENT ANCHORAGE

4.2 WORKING STAGES OF RC ELEMENTS

4.3 DURABILITY OF RC

Reinforcement anchorage in concrete

The concrete does not withstand tension, therefore associated with steel reinforcements. After concrete cracking, reinforcement is overtake tensile stresses of the elements.

 \Rightarrow Must be **ensure cooperation** between concrete and reinforcement, i.e. reinforcement slipping in conrete, by a suitable **anchorage**.

Reinforcement anchorage in concrete is achieved trough:

- Bond
- Hooks or Heads of the bars
- Special anchorage

Concrete and reinforcement works together due to bond.

- Bond \rightarrow defined by the bond strength, f_b
 - \rightarrow is produced by
 - a) adhesion between concrete and steel
 - b) friction between reinforcement & concrete
 - c) clenching of concrete between bar ribs

Concrete and reinforcement works together due to bond.

- Bond \rightarrow defined by the bond strength, f_b
 - \rightarrow is produced by
 - a) adhesion between concrete and steel $\approx 10\%$
 - b) friction between reinforcement & concrete
 - c) clenching of concrete between bar ribs

The cube can not be moved because it is stuck on the metal plate

Concrete and reinforcement works together due to bond.

- Bond \rightarrow defined by the bond strength, f_b
 - \rightarrow is produced by
 - a) adhesion between concrete and steel ≈10%
 - b) friction between reinforcement & concrete ≈20%
 - c) clenching of concrete between bar ribs

- fresh concrete is shrinking
- radial compression is produced
- moving bar entail friction

Concrete and reinforcement works together due to bond.

- Bond \rightarrow defined by the bond strength, f_b
 - \rightarrow is produced by
 - a) adhesion between concrete and steel ≈10%
 - b) friction between reinforcement & concrete $\approx 20\%$
 - c) clenching of concrete between bar ribs ≈70%

Bond model for a reinforcement with periodic profile

Dr.ing. Nagy-György T. ©

Bond stress is obtained by pull-out test

Failure mode \rightarrow Pulling out of the bar (plane bar)

 \rightarrow Cracking of concrete (ribbed bar)

Bond stress is obtained by pull-out test

Bond failure

- \rightarrow bar sliding for plain bars
- \rightarrow concrete cracking, even splitting in 2 or 3 pieces for ribbed

bar

$$f_b = \frac{P}{\pi \cdot \phi \cdot \mathbf{l}_b}$$

Bond stress is obtained by pull-out test

Bond failure

- \rightarrow bar sliding for plain bars
- \rightarrow concrete cracking, even splitting in 2 or 3 pieces for ribbed

Anchorage / Ancorarea

stress distribution in transversal and longitudinal Unit bond directions

Dr.ing. Nagy-György T. ©

Unit bond stress distribution in a beam, near a crack

Dr.ing. Nagy-György T. ©

Behavior of reinforcement embedded in concrete for centric tension

Behavior of reinforcement embedded in concrete for centric tension

Necessary anchorage length $l_b \rightarrow ensure stress transmission from reinforcement to concrete through bond on this length Rational failure condition: bond failure to be produce simultaneously with reinforcement yielding (<math>\sigma_{sd} = f_{yd}$)

 $N_c = N_s$

$$\pi \cdot \phi \cdot l_b \cdot f_{bmed} = \frac{\pi \cdot \phi^2}{4} f_y \quad \Rightarrow \qquad l_b = \frac{\phi \cdot f_y}{4 \cdot f_{bmed}}$$

In conformity to EC2:

$$l_{b,rqd} = \frac{\phi \cdot \sigma_{sd}}{4 \cdot f_{bd}} \qquad \qquad \text{where} \quad l_{bd} = \alpha_1 \alpha_2 \alpha_3 \alpha_4 \alpha_5 l_{b,rqd} \ge l_{b,min}$$

At the limit:

$$l_{b,rqd} = \frac{\phi \cdot f_{yd}}{4 \cdot f_{bd}}$$

		Reinforcement bar	
Influencing factor	Type of anchorage	In tension	In compression
Shape of bars	Straight	$\alpha_1 = 1,0$	$\alpha_1 = 1,0$
	Other than straight (see Figure 8.1 (b), (c) and (d)	$\alpha_1 = 0,7$ if $c_d > 3\phi$ otherwise $\alpha_1 = 1,0$ (see Figure 8.3 for values of c_d)	α ₁ = 1,0
Concrete cover	Straight	$lpha_2 = 1 - 0.15 (c_d - \phi)/\phi$ ≥ 0.7 ≤ 1.0	α ₂ = 1,0
	Other than straight (see Figure 8.1 (b), (c) and (d))	$lpha_2 = 1 - 0,15 (c_d - 3\phi)/\phi$ $\geq 0,7$ $\leq 1,0$ (see Figure 8.3 for values of c_d)	α ₂ = 1,0
Confinement by transverse reinforcement not welded to main reinforcement	All types	$\alpha_3 = 1 - K\lambda$ ≥ 0.7 ≤ 1.0	α ₃ = 1,0
Confinement by welded transverse reinforcement*	All types, position and size as specified in Figure 8.1 (e)	$\alpha_4 = 0,7$	$\alpha_4 = 0,7$
Confinement by transverse pressure	All types	$lpha_5 = 1 - 0.04p$ ≥ 0.7 ≤ 1.0	-

$$l_{bd} = \alpha_1 \alpha_2 \alpha_3 \alpha_4 \alpha_5 l_{b,rqd} \ge l_{b,min}$$

- α_1 form of the bars assuming adequate cover
- α_2 concrete minimum cover

 $\alpha_{\rm 3}$ - confinement by transverse reinforcement

 α_4 - influence of one or more welded transverse bars ($\phi_t > 0,6\phi$) along the design anchorage length

 α_{5} - effect of the pressure transverse to the plane of splitting along the design anchorage length

 $\alpha_2 \alpha_3 \alpha_5 \ge 0,7$

$$l_{bd} = \alpha_1 \alpha_2 \alpha_3 \alpha_4 \alpha_5 l_{b,rqd} \ge l_{b,min}$$

Effects of non-welded reinforcements

Anchorage of links and shear reinforcement

Simplification:

 $l_{bd} = \alpha_1 l_{b,rqd}$

- for shapes shown in Figure 8.1b to 8.1d

b) Equivalent anchorage length for standard bend d) Equivalent anchorage length for standard loop

Table 8.2: Values of α ₁ , α	σ_3, α_4 and α_5 coefficients
---	--

	Type of anchorage	Reinforcement bar	
Influencing factor		In tension	In compression
Shape of bars	Straight	α ₁ = 1,0	$\alpha_1 = 1,0$
	Other than straight (see Figure 8.1 (b), (c) and (d)	$\alpha_1 = 0,7 \text{ if } c_d > 3\phi$ otherwise $\alpha_1 = 1,0$ (see Figure 8.3 for values of c_d)	α ₁ = 1,0

Simplification:

 $l_{bd} = \alpha_1 l_{b,rqd}$

- for shapes shown in Figure 8.1b to 8.1d

b) Equivalent anchorage length for standard bend d) Equivalent anchorage length for standard loop

Table 8.2: Values of α_1 , α_2 , α_3 , α_4 and α_5 coefficients

Dr.ing. Nagy-György T. ©

$$f_{bd} = 2.25 \cdot \eta_1 \cdot \eta_2 \cdot f_{ctd} \rightarrow \text{design value of the ultimate bond stress}$$

where:

 f_{ctd}

 η_1 - is a coefficient related to the quality of the bond condition and the position of the bar during concreting

= 1.0 \rightarrow when 'good' conditions are obtained

- = 0.7 \rightarrow for all other cases
- η_2 is related to the bar diameter
 - = 1.0 pt $\phi \le 32$ mm
 - $= (132-\phi)/100$ pt $\phi > 32$ mm
 - design tensile strength of concrete

$$l_{b,rqd} = \frac{\phi \cdot f_{yd}}{4 \cdot f_{bd}}$$
$$l_{bd} = \alpha_1 \alpha_2 \alpha_3 \alpha_4 \alpha_5 l_{b,rqd} \ge l_{b,min}$$

Dr.ing. Nagy-György T. ©

$$f_{bd} = 2.25 \cdot \eta_1 \cdot \eta_2 \cdot f_{ctd} \rightarrow \text{design value of the ultimate bond stress}$$

Bond conditions:

Longitudinal reinforcement bars can be anchored to through the following forms:

1. Strait ends

2. Bent ends

a) Basic tension anchorage length, *I*_b, for any shape measured along the centreline

b) Equivalent anchorage length for standard bend

- c) Equivalent anchorage length for standard hook
- d) Equivalent anchorage length for standard loop

Longitudinal reinforcement bars can be anchored to through the following forms:

3. Welded transverse bar

4. Special-end anchorage (headed reinforcement)

- 4. Special-end anchorage (headed reinforcement)
- Transfer through concentrated stresses eliminates the need of anchorage length, without using bond
- The total length of the bar can be used
- Reducing agglomeration of reinforcements \rightarrow element size reduction
- Stiff anchorage at shear reinforcement reduce shear strains, thus reducing shear crack width

Stress distribution

Position of the active section

4. Special-end anchorage (headed reinforcement)

Dr.ing. Nagy-György T. ©

Anchorage / Ancorarea

Bond strength	depends on:
----------------------	-------------

- Concrete qualityC \nearrow $\Rightarrow f_b \nearrow$ Cement dosageCem \checkmark $\Rightarrow f_b \nearrow$ Water cement ratioW/Cem \checkmark $\Rightarrow f_b \checkmark$
- Compaction \nearrow $\Rightarrow f_b \nearrow$
- Position of the reinforcement during the casting

for horizontal bars for vertical bars

 $\Rightarrow f_b > 1 \text{ (air voids)}$ $\Rightarrow f_b > 1$

- Shape of the reinforcement cross-section

- peeks in stress distribution
- weak compaction of concrete

Anchorage / Ancorarea

Anchorage / Ancorarea

Bond strength depends on:

Dr.ing. Nagy-György T. ©

Faculty of Civil Engineering

 $\Rightarrow f_h \nearrow$

Anchorage / Ancorarea

- Bond strength depends on:
- Transversal reinforcement prevents (transversal) deformation

 $f_{b1} < f_{b2}$

Why bars should be anchored ?

CORRECT DETAILING

Summary:

Anchorage of the bars must be realized to ensure:

- good transfer of reinforcement tensile force to concrete
- avoid longitudinal cracks and concrete splitting.

For this reason the following requirements will be fulfilled:

- the minimum spacing of the bars
- •anchorage of the bars
- •disposing transversal bars (welded or non-welded), if necessary
- •the sufficient concrete cover

4. REINFORCED CONCRETE / BETONUL ARMAT

Anchorage / Ancorarea

LAPPING OF BARS

 ϕ > 14 mm \rightarrow maximum length =12,0 m

Forces are transmitted from one bar to another by:

- lapping of bars provided with or without bends or hooks;
- welding;
- mechanical devices.

Connection between bars should normally be staggered and not located in areas of high moments/forces (e.g. supports, plastic hinges)

Dr.ing. Nagy-György T. ©

4. REINFORCED CONCRETE / BETONUL ARMAT

Anchorage / Ancorarea

Laps / Înnădiri

Laps / Înnădiri

Arrangement of lapped bars

$$l_0 = \alpha_1 \cdot \alpha_2 \cdot \alpha_3 \cdot \alpha_5 \cdot \alpha_6 \quad l_{b,rqd} \ge l_{0,min} \rightarrow \text{design lap length}$$

$\alpha_{6} \rightarrow$	Percentage of lapped bars relative to the total cross-section area	< 25%	33%	50%	>50%
0	$\alpha_{\scriptscriptstyle 6}$	1	1,15	1,4	1,5
	Note: Intermediate values may be determined by interpolation.				

All bars in compression and secondary (distribution) reinforcement may be lapped in one section.

Dr.ing. Nagy-György T. ©

Anchorage / Ancorarea

Arrangement of lapped bars

Clear distance between lapped bars

a \leq min (50 mm; 4 ϕ) otherwise l_0 should be increased by **a**

4. REINFORCED CONCRETE / BETONUL ARMAT

Anchorage / Ancorarea

Laps / Înnădiri

Arrangement of lapped bars

Longitudinal distance between two adjacent laps

Clear distance between adjacent bars in case of adjacent laps

 $\Sigma A_{st} \geq 1.0 A_s$

 \rightarrow + 1 transversal bar

Laps / Înnădiri

Transverse reinforcement in the lap zone

 \rightarrow is required in the lap zone to resist transverse tension forces

b) bars in compression

Laps / Înnădiri

Laps for welded mesh fabrics made of ribbed wires reinforcement

a) intermeshed fabric (longitudinal section)

b) layered fabric (longitudinal section)

Diametrul barelor (mm)	Lungimi de suprapunere
$\phi \leq 6$	≥150 mm; cel puțin un ochi de plasă în intervalul de înnădire fig. 5.18a.
$6 < \phi \le 8,5$	≥250 mm; cel puțin două ochiuri de plasă în intervalul de înnădire fig. 5.18b.
$8,5 < \phi \le 12$	≥350 mm; cel puțin două ochiuri de plasă în intervalul de înnădire fig. 5.18b.

Anchorage / Ancorarea

Laps / Înnădiri

Welding

Welding details will be specified in the design project, together with specific conditions, as well as the permissible deviations.

Dr.ing. Nagy-György T. ©

Anchorage / Ancorarea

Mechanical couplers

Standard and position couplers

Foundations \rightarrow

Dr.ing. Nagy-György T. ©

Anchorage / Ancorarea

4. REINFORCED CONCRETE / BETONUL ARMAT

Laps / Înnădiri

Mechanical couplers

Anchorage / Ancorarea

Laps / Înnădiri

Mechanical couplers

Anchorage / Ancorarea

Laps / Înnădiri

Mechanical couplers

Coupler with screwed-in shear-off screw

Coupler with sheared-off screw head

Anchorage / Ancorarea

4. REINFORCED CONCRETE / BETONUL ARMAT

Laps / Înnădiri

Mechanical couplers

halfen.com

4. REINFORCED CONCRETE / BETONUL ARMAT

Anchorage / Ancorarea

Laps / Înnădiri

Mechanical couplers

4.1 REINFORCEMENT ANCHORAGE

4.2 WORKING STAGES OF RC ELEMENTS

4.3 DURABILITY OF RC

Working stages / Stadiile de lucru

The behaviour of RC elements depends on the value of internal forces induced by loads.

In time, intensity of internal forces increasing, that leads to changes in stress distributions.

Working stages / Stadiile de lucru

Concrete and steel has different characteristics, emphasized by the **σ – ε** diagrams.

 f_c – compressive strength of concrete

- f_{ct} tensile strength of concrete
- ε_{cu} ultimate compressive strain of concrete
- ε_{ctu} ultimate tensile strain of concrete
- E_{cm} secant modulus of elasticity

 f_v – yielding limit

- f_t tensile strength of steel
- ε_{su} ultimate tensile strain
- ε_{sv} strain at yielding
- $E_{\rm s}$ Young's modulus of steel

Dr.ing. Nagy-György T. ©

Faculty of Civil Engineering

Working stages / Stadiile de lucru

During the life of the element there are the following stages: I. Elastic

- II. Elasto-plasic (service)
- III. Plastic stage (failure)

To discuss these stages \rightarrow consider a simply supported beam

Dr.ing. Nagy-György T. ©

Working stages / Stadiile de lucru

STAGE I.

- Low value of loads
- Concrete is uncracked \rightarrow entire cross section is active
- Bending stiffness is maximum (EI)
- Mainly elastic behavior

Limit of Stage I. \Leftrightarrow $\epsilon_{ct} = \epsilon_{ctu}$ \rightarrow $\sigma_{ct} = f_{ct}$

- plastic deformations are produced in the tensioned concrete at the limit of the stage

 at the limit of the stage, for a very small increasing of loads, tensioned concrete will crack; M_{cr} = cracking bending moment.

Working stages / Stadiile de lucru

STAGE I.

 \rightarrow Design in stage I is generally used for hydro-technical structures.

Design in stage I is not economical because the stress in reinforcement is very small
→ Reinforcement is not used to at its capacity.

Working stages / Stadiile de lucru

STAGE I.

Dr.ing. Nagy-György T. ©

Working stages / Stadiile de lucru

STAGE I.

Dr.ing. Nagy-György T. ©

Working stages / Stadiile de lucru

STAGE I.

Dr.ing. Nagy-György T. ©

Working stages / Stadiile de lucru

STAGE II. – service stage

- under service loads, tension zone of the element is cracked
- concrete in tension is neglected
- active section consists of compressed concrete and tension reinforcement
- bending stiffness (EI) of the section decreases as a result of cracking
- generally, elastic behaviour, characterized by:
 - in compressed concrete: $\sigma_c \approx 0$
 - in tensioned reinforcement:

$$\sigma_c \approx 0.5 f_c$$

$$\sigma_{\rm s} \approx 0,7...0.8 \, {\rm f}_{\rm y}$$

Working stages / Stadiile de lucru

STAGE II. – service stage

 \rightarrow Is the basis of design for SLS and fatigue

Working stages / Stadiile de lucru

STAGE II. – service stage

 \rightarrow Is the basis of design for SLS and fatigue

Working stages / Stadiile de lucru

STAGE II. – service stage

 \rightarrow Is the basis of design for SLS and fatigue

Working stages / Stadiile de lucru

<u>STAGE III.</u> – Failure stage

- Increasing of loads leads to further increase of strains and stresses

- Reinforcement starts to yield in case of usual reinforcement percentages (p = 0,3...2,5%)

- Under constant loads there is a progressive rotation of the section induced by reinforcement yielding. This situation is defined as plastic hinge involving the curved diagram in compressed concrete \rightarrow corresponding the bending moment $M_p = A_s f_v z \approx 0.9 A_s f_v d$ (p = plastic)

- stiffness decreasing, deformations increasing, neutral axis rising toward the maximum point \rightarrow Minimum bending stiffness & very high deflection

- further increasing of loads leads finally to crushing of compressed concrete \rightarrow corresponding to M_{R} (failure or resisting moment).

- the failure is ductile, because of the large deformations before the collapse.

Dr.ing. Nagy-György T. ©

Faculty of Civil Engineering

Working stages / Stadiile de lucru

STAGE III. – Failure stage

Dr.ing. Nagy-György T. ©

Working stages / Stadiile de lucru

STAGE III. – Failure stage

Dr.ing. Nagy-György T. ©

Working stages / Stadiile de lucru

STAGE III. – Failure stage

Working stages / Stadiile de lucru

STAGE III. – Failure stage

Working stages / Stadiile de lucru

4. REINFORCED CONCRETE / BETONUL ARMAT

Working stages / Stadiile de lucru

- Along the element could be find all the working stages.
- The element works as a concrete arch with a steel tie

Dr.ing. Nagy-György T. ©

Working stages / Stadiile de lucru

FINAL REMARKS

- Failure of RC elements having **usual reinforcement percentage** between **0.4** ÷ **2.0** (**2.5**)% begins with yielding of reinforcement and finishing by crushing of compressed concrete.

- Elements with great value of reinforcement percentage = **over-reinforced concrete** \rightarrow no more yielding of reinforcement, failure is produced by crushing of compressed concrete Is not advisable to use such case:

- reinforcement is not yield \rightarrow not economical
- failure is a brittle-one

- Element with low reinforcement percentage = **under-reinforced concrete** \rightarrow failure is produced by tensile failure of reinforcement, without crushing of compressed concrete \rightarrow used in massive constructions.

 $\rho\% = A_s/A_c \times 100 \rightarrow reinforcement percentage$

Working stages / Stadiile de lucru

FINAL REMARKS

STATICALLY DETERMINATED STRUCTURES

Plastic hinge shows immediate failure

STATICALLY INDETERMINATE STRUCTURES

Plastic hinge:

- structure still stands
- reduction of the static indeterminacy
- redistribution of efforts to other areas
- ensure dissipation of the seismic energy

BASIC PRINCIPLE OF SEISMIC DESIGN

4.1 REINFORCEMENT ANCHORAGE

4.2 WORKING STAGES OF RC ELEMENTS

4.3 DURABILITY OF RC

Durability / Durabilitatea

Definition

A durable structure shall meet the requirements of serviceability, strength and stability throughout its design working life, without significant loss of utility or excessive unforeseen maintenance.

Reinforcement corrosion – initiated by chlorides

Durability / Durabilitatea

Reinforcement corrosion – initiated by carbonation

In time \rightarrow

Ca(OH) ₂	+	$CO_2 \rightarrow$	$CaCO_3 + H_2O$
concrete		environment	it is not alkaline $ ightarrow$ no further protection
			pH 13-14 reduced to pH 7-8

CO ₂	\rightarrow nothing happens!
H_2O	\rightarrow nothing happens!

But $CO_2 + H_2O \rightarrow H_2CO_3$ (carbonic acid)

After depassivation H_2CO_3 attack reinforcement \rightarrow corrosion (rust)

Dr.ing. Nagy-György T. ©

Reinforcement corrosion – initiated by carbonation

Freeze-Thaw attack

int.

Reinforcement corrosion - superposed effects

4. REINFORCED CONCRETE / BETONUL ARMAT

Durability / Durabilitatea

Construction design lifetime (for guidance)

Category	Construction design lifetime (in years)	Type of construction (Examples)		
5	=100	Important constructions, monumental buildings		
4	50 – 100	Structures for buildings and current constructions		
3	15 – 30	Structures for farm buildings or similar		
2	10 – 25	Construction parts which could be replaced		
1	10	Temporary structures		

Durability of concrete depends on:

- **Exposure conditions:** atmosphere, soil, seawater, salt, mechanical abrasion, storage or contact with chemicals \rightarrow exposure class X
- Cement type \rightarrow in some cases may require special cements resistant to chemicals
- **Concrete quality** \rightarrow chosen usually from strength condition, but may be required superior classes in certain environmental conditions (density & strength)
- Thickness of concrete cover \rightarrow is calculated according to the exposure class, to protect the reinforcement from penetration of aggressive substances, but also in case of fire
- Crack width \rightarrow if is not exceed the permissible openings (generally 0.3 mm), are generally not dangerous

If the factors are favorable, concrete durability could be very high.

4. REINFORCED CONCRETE / BETONUL ARMAT

Durability / Durabilitatea

 $\mathbf{0} \rightarrow$ no risk of corrosion or attack

- C → Carbonation = corrosion induced by Carbonation
- D → Deicing salt = corrosion induced by chlorides
- **S** \rightarrow **Seawater** = corrosion induced by chlorides
- F → Frost = Freeze/thaw attack

- A → Agressive environmet = chemical attack
- + $M \rightarrow Mechanical abrasion$

01	Description of the section of the			
Class	Description of the environment	Informative examples where exposure classes		
designation		may occur		
1 Norisk of	corrosion or attack	1		
	For concrete without reinforcement or			
XO	embedded metal: all exposures except where			
	there is freeze/thaw, abrasion or chemical			
	attack			
	For concrete with reinforcement or embedded			
	metal: very dry	Concrete inside buildings with very low air humidit		
	induced by carbonation			
XC1	Dry or permanently wet	Concrete inside buildings with low air humidity		
		Concrete permanently submerged in water		
XC2	Wet, rarely dry	Concrete surfaces subject to long-term water		
		contact		
		Many foundations		
XC3	Moderate humidity	Concrete inside buildings with moderate or high ai		
		humidity		
		External concrete sheltered from rain		
XC4	Cyclic wet and dry	Concrete surfaces subject to water contact, not		
		within exposure class XC2		
3 Corrosion	induced by chlorides	•		
XD1	Moderate humidity	Concrete surfaces exposed to airborne chlorides		
XD2	Wet, rarely dry	Swimming pools		
		Concrete components exposed to industrial waters		
		containing chlorides		
ХDЗ	Cyclic wet and dry	Parts of bridges exposed to spray containing		
		chlorides		
		Pavements		
		Carpank slabs		
4 Corrosion	induced by chlorides from sea water			
XS1	Exposed to airborne salt but not in direct	Structures near to or on the coast		
	contact with sea water			
XS2	Permanently submerged	Parts of marine structures		
XS3	Tidal, splash and spray zones	Parts of marine structures		
5. Freeze/Th				
XF1	Moderate water saturation, without de-icing	Vertical concrete surfaces exposed to rain and		
	agent	freezing		
XF2	Moderate water saturation, with de-icing agent	Vertical concrete surfaces of road structures		
		exposed to freezing and airborne de-icing agents		
XF3	Highwater saturation, without de-icing agents	Horizontal concrete surfaces exposed to rain and		
		freezing		
XF4	High water saturation with de-icing agents or	Road and bridge decks exposed to de-icing agent		
	sea water	Concrete surfaces exposed to direct spray		
		containing de-icing agents and freezing		
		Splash zone of marine structures exposed to		
		freezing		
6. Chemical	attack	•		
XA1	Slightly aggressive chemical environment	Natural soils and ground water		
	according to EN 206-1, Table 2			
XA2	Moderately aggressive chemical environment	Natural soils and ground water		
, o 4	according to EN 206-1, Table 2			
XA3	Highly aggressive chemical environment	Natural soils and ground water		
	according to EN 206-1, Table 2			

Dr.ing. Nagy-György T. ©

Reinforcement corrosion - superposed effects

Reinforcement corrosion - superposed effects

Strategies considered for increasing sustainability:

A. Avoidance of degradation reactions - is obtained by:

 \rightarrow "environmental change" application of membrane elements, protective films, etc .;

→ chose of non-reactive materials: stainless steel, coated reinforcement, non-reactive aggregates, sulfates resistant cements ;

 \rightarrow reactions inhibition by cathodic protection, use of air entraining admixtures to to increase freeze-thaw resistance.

B. The selection of the optimum materials and compositions, suitable to resist to the expected degradation reactions

 \rightarrow suitable concrete composition;

 \rightarrow concrete cover thickness related to the environmental conditions;

 \rightarrow applying appropriate technologies for compacting concrete;

 \rightarrow increase the cross section of the elements resulted from the calculation, if is necessary

Concrete cover

 \rightarrow is the distance between the surface of the reinforcement closest to the nearest concrete surface (including links and stirrups and surface reinforcement where relevant) and the nearest concrete surface.

The concrete cover ensures:

- Force transfer by bond from reinforcement to concrete
- Protection of steel rebars against corrosion (durability)
- An adequate fire resistance (not treated here)

The nominal cover shall be specified on the drawings !!! :

$$c_{nom} = c_{min} + \Delta c_{dev}$$

$$\Delta c_{dev} = 5 \text{ mm for cast-in-place slab (N. Annex)}$$

= 10 mm for the rest of the element (A.N.)

Durability / Durabilitatea

$$c_{nom} = c_{min} + \Delta c_{dev}$$

Minimum concrete cover

 $c_{min} = max \{c_{min,b}; c_{min,dur} + \Delta c_{dur,\gamma} - \Delta c_{dur,st} - \Delta c_{dur,add}; 10 mm\}$

$$c_{min} = max \{ c_{min,b}; c_{min,dur}; 10 mm \}$$

bond durability

-*c_{min,b}* - minimum cover due to bond requirement -c_{min.dur} - minimum cover due to environmental conditions (N. Annex) - additive safety element (generally =0) (N. Annex) $-\Delta c_{dur,v}$ $-\Delta c_{dur.st}$ - reduction of minimum cover for use of stainless steel (N. Annex) $-\Delta c_{dur,add}$ - reduction of minimum cover for use of additional protection (N. Annex)

Minimum concrete cover

$$c_{min} = max \{c_{min,b}; c_{min,dur}; 10 mm\}$$

bond durability

 $c_{min,b} \geq \Phi$

 $c_{min,dur}$ = function of structural class (recommended S4 for a design working life of 50 years) and exposure class

Environmental Requirement for c _{min.dur} (mm)							
Structural	Exposure Class according to Table 4.1						
Class	X0	XC1	XC2 / XC3	XC4	XD1/XS1	XD2 / XS2	XD3 / XS3
S1	10	10	10	15	20	25	30
S2	10	10	15	20	25	30	35
S3	10	10	20	25	30	35	40
S4	10	15	25	30	35	40	45
S5	15	20	30	35	40	45	50
S6	20	25	35	40	45	50	55

Recommended structural classification

Structural Class							
Criterion	Exposure Class according to Table 4.1						
Criterion	XO	XC1	XC2/XC3	XC4	XD1	XD2/XS1	XD3/XS2/XS3
Design Working Life of	increase	increase	increase	increase	increase	increase	increase class
100 years	class by 2	class by 2	class by 2	class by 2	class by 2	class by 2	by 2
Strength Class 1)2)	≥ C30/37	≥ C30/37	≥C35/45	≥C40/50	≥ C40/50	≥C40/50	≥ C45/55
	reduce	reduce	reduce	reduce	reduce	reduce	reduce class by
	class by 1	class by 1	class by 1	class by 1	class by 1	class by 1	1
Member with slab	reduce	reduce	reduce	reduce	reduce	reduce	reduce class by
geometry	class by 1	class by 1	class by 1	class by 1	class by 1	class by 1	1
(position of reinforcement not affected by construction process)							
Special Quality	reduce	reduce	reduce	reduce	reduce	reduce	reduce class by
Control of the concrete	class by 1	class by 1	class by 1	class by 1	class by 1	class by 1	1
production ensured							

E-mail: tamas.nagy-gyorgy@upt.ro

Tel: +40 256 403 935

http://www.ct.upt.ro/users/TamasNagyGyorgy/index.htm

Office: A219

